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Some Category-Theoretic Ideas in Algebra
(A Too-Brief Tour of Algebraic Structure,
Monads, and the Adjoint Tower)

George M. Bergman

In recent years, categorists have come up with some very interesting ways of
looking at algebraic constructions and algebraic objects. But most of what they
write on this is technical and aimed at other categorists. I shall sketch some of these
ideas here, emphasizing concrete examples, for the algebraist with a reasonable
foundation in category theory (familiarity with adjoint functors and colimits).
The unifying thread of the article will be the problem: What algebraic structure
can be put on the values of a given set-valued functor?

1. Coalgebras, and representable functors [1]—review. Let o/ and # be varieties
of algebras. (& may be, more generally, any category with colimits.) It is known
that a functor V: o/ — 4 has a left adjoint if and only if at the set level it is repre-
sentable; that is, if and only if, letting U: # — &»+ denote the underlying-set
functor of 4, one has U-¥V =~ Hom (R, —) for some object R of % :

B
Vv
(1) / u

A —— Bus
Hom(R,—)

In this situation, the structures of algebra V(4) € Ob(%) on the sets Hom (R, A4)
arise from a #-coalgebra structure on the representing object R in 7.

ExaMPLE. The functor GL,,: #:np — G:oup has a left adjoint, because UoGL, is
represented by the ring R presented by 2n2 generators x;;, y;; (i, j < n) and the 2n2
relations comprising the matrix equations ((x;))((»;)) = ((¥i)))((x:})) = 1., i.e.,
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the ring with a universal invertible n x n matrix, x = ((x;7)). To study the mul-
tiplication of GL, take the ring with fwo universal invertible » x »n matrices,
namely the coproduct of two copies of R, R’ ][ R, and call these two matrices
x', x" € GL,(R' II R"); they correspond to the two coprojection maps, R — R'[[R".
Form their product x'x" € GL,(R’I] R"), and represent it by a homomorph-
ism m: R - R’ [ R". The homomorphism m now “‘encodes” the multiplication
of GL,, just as the object R “encodes” the construction of GL, as a set: Given
any elements a, b € GL,(4) = Hom (R, A) (any ring A) one gets their product
in GL,(4) = Hom(R, A) as the composition:
R R R0,

In the same way, the matrix-inverse operation of GL, corresponds to a map
it R — R (namely, x;; = y;;, ¥;; — X;;); and the O-ary operation giving the identity
matrix I, € GL,(A) corresponds to a map of R into its O-fold coproduct with itself,
I R, which is simply the initial object Z of .y (namely, x;;, yi; — 0;; € Z).
These maps, called comultiplication, coinverse and counit, comprise a structure of
cogroup on the object R of RZenp.

For a very interesting exposition of coalgebras and related constructions, see
P. Freyd [1]. Cf. also [2, §II1.6] and [4].

(Warning to the ring-theorist: Do not confuse this use of the term ““cogroup,”
and, more generally, of “‘coalgebra” with the deceptively similar meaning of the
latter term in the theory of Hopf algebras! The relation between these concepts is
discussed in [4, §8].)

2. Turnabout is fair play. Let us now reverse our viewpoint. Let .o/ be a category
with coproducts, and R be an object of .o7. Suppose we form the representable func-
tor Hom (R,—): & — &=+, and ask: What algebraic structure can we put on this
functor? That is, what is the richest category of algebras # such that we can
factor Hom(R,—) through the forgetful functor U: & — &~s asin (1)?

The remarks of the preceding section contain the answer: The n-ary operations
we can put on % correspond precisely to the n-ary cooperations possessed by R
in &, i.e., to the set of all maps R = R [] - I[ R. In general this will give a very
big and unwieldy set of operations, but there may be some convenient subset
which generates the rest.

The identities of Z will come from ““coidentities’ of these co-operations of R.

ExaMpLE. What algebraic structure can we put, in a functorial manner, on the
set of elements of exponent 2 in a group G?

The functor G — {x € |G| |x? = ¢} is represented by the object Zp of uows.
A description of all maps Z, — Z, ][+ 1] Z,, i.e., of all elements of exponent 2 in
the group with presentation {xi, ---, x, |x§ = ... = x2 = ¢), may be obtained from
classical results on the structure of coproducts of groups. (N.B. Not by “general
nonsense’’!) They are (as elements) precisely e, and all conjugates of the generators
Xy, ***, X, From this it is not hard to deduce that the operations we get on
Hom(Z,,—) are generated by the 0-ary operation e (induced by the trivial map
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Z, — |1y Z;, = {¢}) and the binary operation of conjugation, (x, y)+— x¥ =
y~1xy (induced by the map Z, = (1|2 =e) = Z, || Z, = {x, p|x2 = y2 =)
taking ¢ to xv).

A group-theoretic analysis of when iterated conjugates of generators in groups
Z, 1] -+ 11 Z, coincide leads to the result that all identities satisfied by these
two operations follow from the following five:

er =e, X% =X, z

xt=x, (¥pP=x, x2= ()
Hence let us call an algebra of type (0, 2) (i.e., a set with one zero-ary and

one binary operation) satisfying these five identities an “involution algebra”.

Then the variety £+ of all involution algebras is the richest variety “#” through

which Hom(Zj,, —): @eeus — £#+ can be factored asin (1). This factorization corre-

sponds to a structure of involution coalgebra on the representing object Z, in Giows.
For other examples see [20].

3. Interpretation in terms of Lawvere’s algebraic theories and algebraic structure.
W. Lawvere introduced in his thesis [3] the idea of describing any variety ./ of
algebras as the category &»+? of all finite-direct-product preserving functors {from
a certain category 0, called the “theory” of ., into the category &~+ of sets. The
category  consists of an object 1, and finite products I x --- x 1, and has for mor-
phisms, in addition to maps constructible from projections, certain other maps
corresponding to the operations of o/, with relations among their compositions
corresponding to the identities of /.

Actually, Lawvere defines the theory to be the opposite category, T, to the cate-
gory 0 I have described, so that he writes &/ = &»sT”. This T is a little less natural
to picture than 6, but has a formal advantage: The category freely generated by
one object 1 under finite coproducts is (up to equivalence) the full subcategory of
&»s with object-set w = {0, 1, 2,---}; so Lawvere’s algebraic theories T are precisely
the coproduct-preserving and object-set-preserving extensions of that category.

The “theory” @ (respectively T') of a variety .o can be looked at as the category
with a universal «/-algebra object (respectively co-s/-algebra object) 1. Thus, in the
category of all categories-with-finite-(co)products, and functors respecting these,
0 (resp. T) represents the construction associating to a category % the category of
all o7-(co)algebras in ¢:

o/-alg(®) =~ ¥°, respectively f/-coalg(¥) = 7.

One can also show that T is isomorphic to the full subcategory of & having for
object-set the set of free algebras { F(0), F(1), ---}.

One may now check that the variety # we associated to any representable functor
Hom(R,—): o — &»+ in the preceding section is described in Lawvere’s terms as
&7 where T is the full subcategory of ./ with objects [[, R(n =0, 1, 2, ---)!

Lawvere looked, 100, at the question of what algebraic structure can be put on a
functor V: & — &=, or more generally, &/ — ¥ where € is any category with finite
direct products. He observes that a functorial n-ary operation on the V(4)’s just
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means a morphism (natural transformation) of functors, ¥» — V. The full sub-
category of the functor-category ¥+, with object-set {0, V1, V2, ...}, will form an
algebraic theory 8y (unless V is trivial), which defines as above a variety 4 such that
the values of V can be regarded as #-objects in ¥. Lawvere calls the theory 6y, or
rather its opposite, Ty, the “algebraic structure” of V.

If V: of — &4 is a representable functor, say ¥ = Hom(R,—), we see from the
Yoneda lemma that this category T}, will be isomorphic to the subcategory of o/
with objects {][, R In =0, 1, ---} which we used to define the & of the preceding
section, Thus, Z = £~sT", so the algebraic structure on ¥V that we determined in
the preceding section is indeed the algebraic structure of ¥ in Lawvere’s sense.

However, we shall see in §5 that there are in general also ‘“higher” types of
algebraic structure to be found in a functor V!

If T is an algebraic theory, Lawvere calls the associated variety &~s7 the “se-
mantics” of T. Thinking of &~sT as a category given with a (forgetful) functor U
L0 &»s, i.e., an object of (Fas | &#5), the universality of # = &»sT" as a variety of
algebras through which to factor V: o — &~+ (an arbitrary member of (€a¢/&ns))
is expressed by Lawvere’s celebrated result, “Structure is adjoint to semantics”;

semantics

- (%a{'/éund)
structure

ﬂ?a/tatb .T/pau‘u.d

4. Monads. (For more details see [2, Chapter VIJ, [6, Introduction], [14, Chapter
21].) We consider again a pair of adjoint functors,
vV
& €, with unit 5: 1, — VF, counit e: FV — 1,,.
F
If we forget the category ./, how much information about this adjunction can
we “‘remember” in terms of the category €?
The composite VF is an endofunctor M: € — €, and the unit » is a morphism
14 — M so these are already expressible in terms of .
The counit ¢: FV — 1, cannot itself be described in &, but VeF will be a mor-
phism yx: MM — M of endofunctors of €.
Writing this “#-data” on our adjunction as a 3-tuple .# = (M, 3, u), one finds
that .# will satisfy the identities indicated by the commuting diagrams:

71y ulu
M=1,M —5 MM MMM — MM
Il
@ Mle 1y ¢ lyep JZ
IM'771 p
MM—* oy MM —— M

An endofunctor M of a category % given with morphisms 7 and 4 satisfying these
identities is called a monad (because of the parallel with operations e: 1 — X,
m: X x X - X, and the corresponding identities, defining a monoid (X, e, m)!
Another common term for monad is triple.)
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As an example, consider the underlying-set functor V: Gicup — Ens, its left
adjoint F, and the resulting monad .# = (M, , u). The functor M= VF: &ns —
&~s 1akes a set S to the set of elements of the free group on S, which can be thought
of as the set of all “abstract group-theoretic combinations of the elements of S™.
The description of  is clear. The morphism g corresponds to the observation that
an “abstract group-theoretic combination of abstract group-theoretic combinations
of elements of S can be “reduced”, by composition of operations, to a single
abstract combination of elements of S.

From this monad .# on &»», can we reconstruct the original adjunction @ee«s 2
&»s and in particular recover the category @-«s? The answer is both a resounding
“Yes!” and a definitive “No!”

To see the “yes”, note that a group can be described as a set S, with “a way of
evaluating within S all abstract group-theoretic combinations of its elements”,
i.e., a map a: M(S) — S. One finds that the conditions o must satisfy for such
a formal evaluation procedure really to be a group structure are the commutativity
of the diagrams:

7](S) 1y«
S———M(S) MM(S))——— M(S)
® N la l”( 5) l“
[+4

S M(S) S

To see the “no,” let . ~%x. denote the category of torsion-free groups, and note
that the forgetful functor « /%s. — &»- also has the free group construction as left
adjoint. This adjunction clearly yields the same monad on &~s that we have just
considered ; so the monad .# does not uniquely determine the adjoint pair, and in
particular, the other category of that pair.

The general situation is this: Given a monad .# = (M, y, u) on a category %,
we may form a category whose objects are pairs (S, @), S an object of %, & a mor-
phism M(S) — S satisfying (3), and whose morphisms are object-maps making the
obvious square commute. This is called the category of “algebras with respect to
A and denoted ##, and we get an adjunction

S, ) S
(M(S), u(S)) S

which isin an appropriate sense (§7 below) universal among adjoint pairs inducing
A on %. It is not the unigue pair inducing ./ ; nonetheless many of the most im-
portant adjoint pairs are related to their monads in this manner.

In particular, any variety .« of algebras is equivalent to &»+#, where .# is the
monad on &»» induced by the underlying/free adjunction o = &»+. In fact, there is
a 1-1 correspondence between monads .# on £»+ and varieties of algebras! Given a
monad .#, &~»# can be made a variety whose #-ary operations are the elements of
M(n), for each n. (Again, of course, in particular cases one may have much smaller

@ @
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generating sets of operations.) The identities, i.e., the rules for composing opera-
tions, are given by u.

Actually, some set-theoretic qualifications are needed here. A precise statement is
that monads on &»s correspond to varieties of algebras which may have infinitary
operations (» must range through all cardinals, in the preceding statement) and
whose operations may even form a proper class; but such that there are only a set
of distinct derived operations of each arity. Varieties of “finitary” algebras cor-
respond to those monads ./ such that for all S € &+, M(S) 2 colimg, g1 cs M(Sp)-

We can now give yet another view of our construction of the “structure” on a
representable functor ¥ = Hom(R, —): &/ — &=+ (& a category with coprod-
ucts). The auxiliary variety 4 through which we factored ¥ was precisely &»s#,
where .# is the monad on &»+ induced by V and its left adjoint F.

épnd‘ll = ‘%

v, |

Ens
F

(This is imprecise because we only considered algebraic structure based on finitary
operations in preceding sections. We may correct this by (a) allowing infinitary
operations in our earlier discussions; or (b) replacing .# by the submonad .#y,,
where M; (S) = colim M(Sy), thus discarding infinitary operations; or (c) if «7
is a variety, and the object R representing V is finitely generated, as was true for
Z, in groups, by noting that then .# = #;,, so in this case there is no problem.)

o

5. Higher structure. We have seen that the categories of algebras with respect to
monads on &~ are varieties of algebras in the traditional sense. What, then, will
we get if we start with a variety € of algebras and a monad .# on €, and form the
category of algebras ¢-/?

It turns out that the objects of % can be described as sets endowed with, in
addition to the operations of &, certain partial operations, and subject, in addition
to the identities of %, to certain ‘“‘partial identities”. Explicitly, if 4 € Ob(%) is an
object definable by generators Xi,..., X,, and a system of relations (X)), then each
element of M(A) induces a partial operation on the objects B € ¥#, whose do-
main is the set of all n-tuples(xy,..., X,,) € |B [" satisfying r(x). (Thus the domains of
these ‘“‘second-stage” operations are defined with the help of the “first-stage”
operations, those of ¢.) Likewise, the map y: M(M(A)) — A gives identities in these
partial (and total) operations which must be satisfied by all n-tuples satisfying r.

Again, for illustration consider the functor V; = Hom(Z;,—): Growsp — Ens,
and its lifting Vy: @eowp — Fne (Fme = the variety of involution algebras). V,
has a left adjoint F,, so this adjoint pair will induce a monad .#, on F»s ---

What does this mean concretely? An involution algebra A gives in a natural
manner generators and relations for a certain group Fp(4)—exponent 2-generators,
and conjugacy relations among these. This group can be characterized as having a
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universal map of involution algebras 4.7, V,Fy(A4). Now if our definition of “in-
volution algebra” were a really complete picture of the structure of the sets of
elements of exponent 2in groups, we would expect the maps 7,(4) to be isomor-
phisms. (Or if you don’t buy that, let us just say it is natural, in studying elements
of exponent 2 in groups, to ask whether this map will be an isomorphism.)

But p, is in general neither injective nor surjective. For example, let 4 be the
involution algebra defined by two generators X, Y and one relation X¥ = X. One
finds that 4 has underlying set {e, X, Y, YX}. F,(4) will be the group on generators
X, Y and relations X2 = Y2 = ¢, Y"1XY = X,

The latter relation says that X and ¥ commute, so F,(A4) is the fours-group, with
underlying set {e, X, ¥, XY}, and all its elements have exponent 2. Hence the map

n2(A4) takes the form )
A V,Fy(A) = M,(4)

which is neither surjective nor injective. The “new” element XY in M,(A4) leads to a
partial binary operation on elements of exponent 2 in a group, associating to every
pair (x, y) such that x?= x the element xy (which will have exponent 2 precisely
because x and y commute). This operation is not definable in terms of conjugation.

The collapse of ¥ and YX in M,(A) likewise yields the “partial identity” (Horn
sentence) holding in the involution algebra of any group, but not following from the
full identities of involution algebras:

Vx, ) xy = x=>y* =

If we gather together the partial operations and partial identities arising from the
maps 9q(4) for all A € Ob(F~»), and add these to our earlier list of operations and
identities, we get axioms for what we may call a “‘second order involution algebra.”
In fact, the category S+ of second order involution algebras is precisely S ne
= (&ns)". (I am now using the subscript 1 for ““first order” involution algebras,
i.e., what I previously just called involution algebras.) Since we get this additional
structure on the objects V,(G) for any group G, we gel a second factorization:

(épnd‘l{l)f’ = fnuz

V. Enatl' = fnul
®)
2
"
?wu/-————-——)é” 94
All this applies, mutatis mutandis to any representable set-valued functor ¥ on a
cocomplete category 7, in particular, on any variety &/ of algebras.
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One can continue to iterate this process. At each step one obtains operations and
identities whose domains are given by systems of equations in the previously con-
structed operations. The resulting diagram ((5) extended) is called the adjoint tower
induced by the original functor V. The construction is due to Appelgate and
Tierney; cf. [12].

Note that the problem of explicitly studying these classes of algebras is not one
of general nonsense but, for instance, in the case ¥; = Hom(Z,, —), real group
theory.I do not know, for example, whether #-+, can be presented by finitely many
partial operations and identities. I do not know whether at the next step one would
find 73: A — V3F5(A) always to be an isomorphism—in which case the tower would
become constant after that point, and £, would be equivalent to a full coreflective
subcategory of @iows, via F3 and Vs—or not. Something positive that one can
say in this case, because Z; is finitely presented as a group, is that on the category
FInvgy = gop lIMy) (+++ Ena#?)---)}# (the natural “wth step of the adjoint tower’”)—sets
with all the structure one gets at the finite steps, f«+;), the maps 7%,(4) will
indeed be isomorphisms, and so £+, is equivalent to a full coreflective subcategory
of @wus. On the other hand, there are examples of adjoint towers of arbitrary
transfinite height.

Let us note how Lawvere’s approach to algebraic theories can be extended to
these higher sorts of algebras. Given a category ./ with colimits, and an object
R in o7, let 4, denote the category((--:&»+#).--)4 arising at the ith level of the
adjoint tower induced by Hom(R, —). We recall that %,, a variety, may be iden-
tified with the category of all product-respecting functors T1°° — &'»s, where T is
the full subcategory of &7 having for object-set the coproducts of copies of R
(in other words, the object-image of the adjoint F;: &»s — /. Again, if as in §2 we
are interested only in finitary operations, we just use {F;(n) | n <w};and in fact
if we make no such restriction at all there are set-theoretic worries; but we shall
skip over these here). Likewise, to describe %, let T, denote the full subcategory of
all colimits in .o¢ of objects of T7; then we find that 4, is equivalent to the category
“&nsT™ where by this we mean all functors T§? — £»s respecting these
(co)products and (co)limits. The object-set of T, = &7 can also be described as
the image of F,: %, - «.

For instance, in our Z, example, 7, contains not only the groups Z;]]...
11 Z, but also the difference-cokernel H':

t—Xx
Z,
t— xy

Z, 11 Z,—H (the fours-group).

Hence T, contains the map
t— X
— " g
which induces in %, the partial operation we discovered.
Note that given the ‘“theory” of £swy, either in the classical sense of a list of
partial operations and identities, or in this Lawverian form, we can speak of “#ney
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-objects” in a general category. In particular, Z, is now a co-#ep-object in the
category @rws. (And in our general context, with ¥; = Hom(R, —), R will be a
co-4,-object of o for all n.)

Lawvere’s concept of the structure of a functor likewise generalizes naturally to
this higher structure: In the formulation of that concept, where Lawvere took the
full subcategory of the functor-category ¥ with object-set {¥» |n =0, 1,---}, one
merely considers instead the full closure under (finite) limits of {¥} in %¥. For
instance, our partial multiplication operation on Hom(Z;, —) now assumes the
form of a morphism of functors W — V, where We &»s 9:~+# is the difference-
kernel functor

(x, y)— x
| N 4 e—

(%, y) v

6. Various examples and observations. The reader will find it instructive (and not
too difficult) to describe completely the adjoint towers associated with the following
functors: the underlying set functor of an arbitrary variety of algebras; the underly-
ing set functor of the category (quasi-variety) of torsion-free groups; (example of
A. Stone); the functor Hom(2, —): Peses — &ns, where 2 € Ob(P-s.¢) is the chain
of length 1, the same example with @, the category of small categories, in place
of Pas-¢. (For 2 is also a category. Cf. [13, Q13].)

(From the torsion-free groups example one can generalize to get a characteriza-
tion of quasi-varieties and semivarieties as certain categories of the form (&»s41):,)

Suppose 4, B, C are associative rings with 1, given with maps 4 —+ B, 4 — C.
Then for any right B-module M and right C-module N, we can form Hom 4(M, N),
getting a functor V: (#-« B)® x (M-« C) — &=s (not representable in the sense
we have been considering). Through universal tricks, one can determine the struc-
ture of ¥ in the sense of Lawvere: It is that of a B ©4 C-module, where B ®, C
= {xeB®,C | Ya€ A, ax = xa}, made a ring in a certain natural manner
discovered by M. Sweedler. There can also be higher structure.

If we start with a family of objects (R;),c;in a category o, they induce a functor
(Hom(R;, —));c;: o — &»s!, which we can examine for structure of many-
sorted algebra. In the category s#7 .+ of pointed topological spaces with
homotopy classes of maps, the family of spheres, (S%),cy induces the functor z:
H T o4 —EnsN. The structure of this functor includes not only the group structures
of each homotopy group =,, but also operations between different degrees, e.g.,
the “Whitehead products” z,, X 7, = Tpyn-1, induced by maps Sms-1 — Sm ]S,

For applications of ideas related to those of this article to the foundations of
algebraic geometry and differential geometry, see [6, pp. 146-244], [9], [10], [11];
for applications to measure theory, see [17].

By duality, one can apply the ideas we have discussed to representable contra-
variant functors. For instance, the (finitary) structure on the functor Hom(—, 2):
Poses — Ens turns out to be precisely that of distributive lattices. (Exercise.
Examine similarly Hom(—, 2): &»s — &»+ and Hom(—, 2): Becdl 45 — Ens.)
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If one is interested in relational structure as well as operations on the values of a
functor ¥, one should look not only at the morphisms among the ¥* but also at
their subfunctors. If ¥V is the covariant (contravariant) representable functor
determined by an object R, an important class of subfunctors of ¥ are those in-
duced by epimorphisms R][...][R — S (resp. by subobjects § = R x ... x R).

ExampLEs. If 9.9 is the category of distributive lattices, the functor Hom(—, 2):
PP — &«s has trivial finitary algebraic structure in the sense of Lawvere, but its
finitary representable relational structure is precisely that of partially ordered
sets, with “<” induced by its graph, 3 = 2 x 2. The underlying set functor
Hom(l, —): Poser — £ns likewise has no operations (so the adjoint tower
construction will not get anywhere with it, in contrast to Hom(2, —)), but the
relation “<” is induced by the epimorphism 1]][1 — 2.

Exercise. The functor Hom(Zj, —): @+oxs — &+ also has representable relational
structure not induced by its operations. What does this say in elementary group-
theoretic terms? If you are a group-theorist, find an example.

I mentioned that a monad on &»s could correspond to a variety of algebras
with a proper class of operations, not generated by any set of them. An example,
noted by Linton [15, p. 90], and studied by Manes [6, pp. 91-118], is the monad
A arising from the adjunction

underlying set
CprotH ans - & s
Stone-Cech
(Gpotsans = compact Hausdorff spaces). As Manes shows, the lifting functor
Vo: GpociHans — Ens* is an equivalence of categories, so compact Hausdorff
spaces may be regarded as a variety of (very infinitary) algebras.

A variety of infinitary algebras which does not correspond to a monad on &£«4is
that of complete Boolean algebras. For it has been shown [5], [19] that there is no
free complete Boolean algebra on countably many generators. This is equivalent to
saying that the {;-ary complete Boolean operations cannot be indexed by any set.

7. Mirror, mirror: -+, Let o7 denote the calegory of adjunctions # = (#, ¥; V,
F; p, €). Then the question with which we began §4, “Given an adjunction £, if we
forget the category ./ what can we ‘remember’ about £ in terms of €?” is
really of the same nature as the question considered in §2. For it asks what “struc-
ture’ can be put on the values of the forgetful functor:

Ay V1V 228

The answer turned out to be: a structure of monad, giving a factorization:

Mon
Yy

©)

(8

L7 Gar
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Of course, the definition of “algebraic structure” must be adjusted to the fact that
we are working here with 2-categories, i.e., categories with morphisms between
morphisms (e.g., natural transformations between functors, in %=+ ). Cf. Lawvere
[6, pp. 141-155].

Let us think of the objects of .#.» as 4-tuples, # = (¥; M, 5, ). The con-
struction from a monad .# of the category of algebras ¥, and thence of the
adjunction (4), is actually a right adjoint to the functor "5 of (6). One would
expect, rather, a left adjoint here. This also exists; it is called the Kleisli con-
struction; the new category involved is written € , [2, §V1.5], e.g., if # is a monad
on &»s, so that &»+7 is a variety of algebras, &»s, turns out to be equivalent to the
full subcategory of free algebras in &»#, that is, to the theory of this variety.

Both of these adjoints to ¥, are left inverses to it as well; so it does not appear
that (6) will also show higher structure.
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