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In recent years, categorists have come up with some very interesting ways of 
looking at algebraic constructions and algebraic objects. But most of what they 
write on this is technical and aimed at other categorists. I shall sketch some of these 
ideas here, emphasizing concrete examples, for the algebraist with a reasonable 
foundation in category theory (familiarity with adjoint functors and colimits). 
The unifying thread of the article will be the problem : What algebraic structure 
can be put on the values of a given set-valued functor? 

1. Coalgebras, and representable functors [1]—review. Let sé and ^ be varieties 
of algebras, (sé may be, more generally, any category with colimits.) It is known 
that a functor V: sé -+ ^ has a left adjoint if and only if at the set level it is repre­
sentable; that is, if and only if, letting U: @l -• $»* denote the underlying-set 
functor of @j9 one has U<> V £ Horn (R9 —) for some object Rof&: 

s 
Hom(R,—) 

In this situation, the structures of algebra V(A) e Ob(^) on the sets Horn (R9 A) 
arise from a <%-coalgebra structure on the representing object R in sé. 

EXAMPLE. The functor GLW : 0t*'*f -> &**«/ has a left adjoint, because U<>GLn is 
represented by the ring R presented by 2n2 generators xij9 y(j (i9j ^ n) and the 2n2 

relations comprising the matrix equations ((xfy))((jty)) = ((tt/))((**•;)) = /«, i.e., 
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the ring with a universal invertible n x n matrix, x = ((xtj)). To study the mul­
tiplication of GL„ take the ring with two universal invertible n x n matrices, 
namely the coproduct of two copies of i?, R' U R"9 and call these two matrices 
xf

9 x" e GLn(R' ]J R")l they correspond to the two coprojection maps, R -> R'UR". 
Form their product x'x" e GLn(R' ]} R")9 and represent it by a homomorph-
ism rn: R -> R' ]} R". The homomorphism m now "encodes" the multiplication 
of GLW, just as the object R "encodes" the construction of GLM as a set: Given 
any elements a, be GLn(A) = Horn (R9 A) (any ring A) one gets their product 
in GLn(A) = Hom(R9 A) as the composition: 

In the same way, the matrix-inverse operation of GL„ corresponds to a map 
i: R -+ R (namely, x{j H> yij9 y^ H> x^); and the 0-ary operation giving the identity 
matrix In e GLM(>4) corresponds to a map of R into its 0-fold coproduct with itself, 
H 0 R9 which is simply the initial object Z of0t*nf (namely, xij9 yi} •-> 5,-y e Z). 
These maps, called comultiplication, coinverse and counit, comprise a structure of 
cogroup on the object R of 0t^. 

For a very interesting exposition of coalgebras and related constructions, see 
P. Freyd [1]. Cf. also [2, §111.6] and [4]. 

(Warning to the ring-theorist: Do not confuse this use of the term "cogroup," 
and, more generally, of "coalgebra" with the deceptively similar meaning of the 
latter term in the theory of Hopf algebras ! The relation between these concepts is 
discussed in [4, §8].) 

2. Turnabout is fair play. Let us now reverse our viewpoint. Let sé be a category 
with coproducts, and R be an object of sé. Suppose we form the representable func­
tor Horn (R,—) : sé -> $**, and ask : What algebraic structure can we put on this 
functor? That is, what is the richest category of algebras ffi such that we can 
factor Hom(jR,—) through the forgetful functor U\<% -* $»* as in (1)? 

The remarks of the preceding section contain the answer : The /7-ary operations 
we can put on 3ft correspond precisely to the /7-ary cooperations possessed by R 
in sé, i.e., to the set of all maps R -> R JJ ••• U R̂. In general this will give a very 
big and unwieldy set of operations, but there may be some convenient subset 
which generates the rest. 

The identities of ^ will come from "coidentities" of these co-operations of R. 
EXAMPLE. What algebraic structure can we put, in a functorial manner, on the 

set of elements of exponent 2 in a group G? 
The functor G H> {XE \G\ \X2 = e] is represented by the object Z2 of ^ ^ « / . 

A description of all maps Z2 ->• Z211 ••• 11 Z2, i.e., of all elements of exponent 2 in 
the group with presentation <xl5 •••, xn \x\ = ••• = x\ = e}, may be obtained from 
classical results on the structure of coproducts of groups. (N.B. Not by "general 
nonsense" !) They are (as elements) precisely e9 and all conjugates of the generators 
X\9 •••, xn. From this it is not hard to deduce that the operations we get on 
Hom(Z2,—) are generated by the 0-ary operation e (induced by the trivial map 
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2̂ 2 -* LU ^2 = M ) a n d the binary operation of conjugation, (x9 y) ^ xy — 
y~lxy (induced by the map Z2 = <?|/2 = e) -> Z2 11 Z2 = <#, >>|;K:2 = j>2 = e> 
taking / to xy). 

A group-theoretic analysis of when iterated conjugates of generators in groups 
%2 11 •'• LI 2̂ 2 coincide leads to the result that all identities satisfied by these 
two operations follow from the following five : 

e* = e9 x* = x, x ( / ) = - z ) y v 
Xe = x9 (xv)y = x9 w / y 

Hence let us call an algebra of type (0, 2) (i.e., a set with one zero-ary and 
one binary operation) satisfying these five identities an "involution algebra". 
Then the variety </»» of all involution algebras is the richest variety " ^ " through 
which Hom(Z2, —) : &***/• -> ê** can be factored as in (1). This factorization corre­
sponds to a structure of involution coalgebra on the representing object Z2 in <^w/. 

For other examples see [20]. 

3. Interpretation in terms of Lawvere's algebraic theories and algebraic structure. 
W. Lawvere introduced in his thesis [3] the idea of describing any variety sé of 
algebras as the category ênJ of all finite-direct-product preserving functors from 
a certain category 0, called the "theory" of sé, into the category £>** of sets. The 
category 0 consists of an object 1, and finite products 1 x ••• x 1, and has for mor-
phisms, in addition to maps constructible from projections, certain other maps 
corresponding to the operations of sé, with relations among their compositions 
corresponding to the identities of sé. 

Actually, Lawvere defines the theory to be the opposite category, T, to the cate­
gory 6 I have described, so that he writes sé = ê**T°\ This Tis a little less natural 
to picture than 6, but has a formal advantage : The category freely generated by 
one object 1 under finite coproducts is (up to equivalence) the full subcategory of 
ê** with object-set co = {0, 1, 2,---}; so Lawvere's algebraic theories Tare precisely 
the coproduct-preserving and object-set-preserving extensions ofthat category. 

The "theory" 0 (respectively T) of a variety sé can be looked at as the category 
with a universal sé-sdgehm object (respectively co-j/-algebra object) 1. Thus, in the 
category of all categories-with-finite-(co)products, and functors respecting these, 
6 (resp. T) represents the construction associating to a category W the category of 
all j3^-(co)algebras in <%: 

j^-alg(^) s <jf», respectively j^-coalg(^) ^ cêT. 

One can also show that T is isomorphic to the full subcategory of sé having for 
object-set the set of free algebras {^(0), F(\)9 •••}. 

One may now check that the variety @i we associated to any representable functor 
Hom(R9—) : sé -» in* in the preceding section is described in Lawvere's terms as 
£n*T°* where Tis the full subcategory of sé with objects UM1? (/? = 0, 1, 2, •••) ! 

Lawvere looked, too, at the question of what algebraic structure can be put on a 
functor V: sé -> ë»*9 or more generally, sé -> ^ where <€ is any category with finite 
direct products. He observes that a functorial /7-ary operation on the V(A)'s just 
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means a morphism (natural transformation) of functors, Vn -• V. The full sub­
category of the functor-category #•*, with object-set {V°9 V1, V2, •••}, will form an 
algebraic theory 0V (unless Kis trivial), which defines as above a variety <% such that 
the values of V can be regarded as ^-objects in <£\ Lawvere calls the theory 6V, or 
rather its opposite, TV9 the "algebraic structure" of V. 

If V: sé -> ê»* is a representable functor, say V = HomOR,—), we see from the 
Yoneda lemma that this category Tv will be isomorphic to the subcategory of sé 
with objects {]}„ R\n = 09 1, •••} which we used to define the & of the preceding 
section, Thus, & = $»*Tv

9 so the algebraic structure on V that we determined in 
the preceding section is indeed the algebraic structure of Kin Lawvere's sense. 

However, we shall see in §5 that there are in general also "higher" types of 
algebraic structure to be found in a functor V\ 

If T is an algebraic theory, Lawvere calls the associated variety $»*T the "se­
mantics" of T. Thinking of S»*T as a category given with a (forgetful) functor U 
to $n*9 i.e., an object of (féW/ <^) , the universality of ^ = S>^Tv as a variety of 
algebras through which to factor V: sé -> $»* (an arbitrary member of (<£W/<£W)) 
is expressed by Lawvere's celebrated result, "Structure is adjoint to semantics"; 

semantics 
Sé Specie**0 £T /eott'eà * (fâaffS'ttj) 

structure 

4. Monads. (For more details see [2, Chapter VI], [6, Introduction], [14, Chapter 
21].) We consider again a pair of adjoint functors, 

V 
sé^l # , with unit 7)\ \<g -> VF9 counit e\FV-* 1^. 

F 
If we forget the category sé9 how much information about this adjunction can 

we "remember" in terms of the category ^ ? 
The composite VF is an endofunctor M : <€ -» ^, and the unit TJ is a morphism 

1^ -• M so these are already expressible in terms of # . 
The counit e: FV -> 1^ cannot itself be described in # , but FeF will be a mor­

phism ^ : MM -> M of endofunctors of fé\ 
Writing this "^-data" on our adjunction as a 3-tuple M — (M9 TJ9 /J)9 one finds 

that M will satisfy the identities indicated by the commuting diagrams : 

M=1«M > MM MMM > MM 

M M'pt 
(2) Ml« 

MM - >M MM — > M 
An endofunctor M of a category ^ given with morphisms y and (j, satisfying these 

identities is called a monad (because of the parallel with operations e: 1 -> X9 

m: X x X -+ X9 and the corresponding identities, defining a monoid (X9 e9 m)\ 
Another common term for monad is triple.) 
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As an example, consider the underlying-set functor V: &**«/i -> $»*, its left 
adjoint F9 and the resulting monad Jt — (M9 7j9/u). The functor M= VF\ $*>* -+ 
$»* takes a set S to the set of elements of the free group on S, which can be thought 
of as the set of all "abstract group-theoretic combinations of the elements of 5". 
The description of yj is clear. The morphism y, corresponds to the observation that 
an "abstract group-theoretic combination of abstract group-theoretic combinations 
of elements of S" can be "reduced", by composition of operations, to a single 
abstract combination of elements of S. 

From this monad Jt on <0W, can we reconstruct the original adjunction 0V**/ ?± 
ina and in particular recover the category <&***/] The answer is both a resounding 
"Yes!" and a definitive "No!" 

To see the "yes", note that a group can be described as a set S9 with "a way of 
evaluating within S all abstract group-theoretic combinations of its elements", 
i.e., a map a: M(S) -• S. One finds that the conditions a must satisfy for such 
a formal evaluation procedure really to be a group structure are the commutativity 
of the diagrams : 

y(S) 1M-a 
S >M(S) M(M(S)) >M(S) 

(3) t*(S) I a 

M(S) >S 

To see the "no," let /. /&s. denote the category of torsion-free groups, and note 
that the forgetful functor s./.<3/i. -> $na also has the free group construction as left 
adjoint. This adjunction clearly yields the same monad on $»* that we have just 
considered ; so the monad Jt does not uniquely determine the adjoint pair, and in 
particular, the other category of that pair. 

The general situation is this : Given a monad Jt = (M9 y/9 //) on a category #, 
we may form a category whose objects are pairs (S, a), S an object of cê, a a mor­
phism M(S) -> S satisfying (3), and whose morphisms are object-maps making the 
obvious square commute. This is called the category of "algebras with respect to 
Jf" and denoted #•*, and we get an adjunction 

(S, a)^S 
(4) V*-

(M(S),n(S))«S 

which is in an appropriate sense (§7 below) universal among adjoint pairs inducing 
J4 on #". It is not the unique pair inducing J(\ nonetheless many of the most im­
portant adjoint pairs are related to their monads in this manner. 

In particular, any variety sé of algebras is equivalent to ê»*M, where Jl is the 
monad on <f »à induced by the underlying/free adjunction sé ^1 &***. In fact, there is 
a 1-1 correspondence between monads Jt on S** and varieties of algebras ! Given a 
monad Jt9 $»*-* can be made a variety whose n-ary operations are the elements of 
M(n), for each n. (Again, of course, in particular cases one may have much smaller 
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generating sets of operations.) The identities, i.e., the rules for composing opera­
tions, are given by /u. 

Actually, some set-theoretic qualifications are needed here. A precise statement is 
that monads on in* correspond to varieties of algebras which may have infinitary 
operations (/? must range through all cardinals, in the preceding statement) and 
whose operations may even form a proper class; but such that there are only a set 
of distinct derived operations of each arity. Varieties of "finitary" algebras cor­
respond to those monads J/t such that for all S e <£«*, M(S) ̂  coIimSo finîteiçS M(SQ). 

We can now give yet another view of our construction of the "structure" on a 
representable functor V = Hom(jR, — ): sé -> £n* (sé a category with coprod­
ucts). The auxiliary variety @l through which we factored F was precisely ê^J4, 
where J<t is the monad on $>** induced by Fand its left adjoint F. 

V, 
V 

.té\ -*&»* 

F 
(This is imprecise because we only considered algebraic structure based on finitary 
operations in preceding sections. We may correct this by (a) allowing infinitary 
operations in our earlier discussions; or (b) replacing Jt by the submonad Jt^, 
where Mîin(S) = colim M(SQ), thus discarding infinitary operations ; or (c) if sé 
is a variety, and the object R representing V is finitely generated, as was true for 
Z2 in groups, by noting that then Jt = ^fin, so in this case there is no problem.) 

5. Higher structure. We have seen that the categories of algebras with respect to 
monads on <f ** are varieties of algebras in the traditional sense. What, then, will 
we get if we start with a variety ^ of algebras and a monad Jt on <€, and form the 
category of algebras %>Jffl 

It turns out that the objects of <€** can be described as sets endowed with, in 
addition to the operations of #, certain partial operations, and subject, in addition 
to the identities of <ß, to certain "partial identities". Explicitly, if A e Ob(^) is an 
object definable by generators Xh..., Xn and a system of relations r(X), then each 
element of M(A) induces a partial operation on the objects B e <£•*, whose do­
main is the set of all «-tuples^,..., x„) e \B\n satisfying r(x).(Thus the domains of 
these "second-stage" operations are defined with the help of the "first-stage" 
operations, those of #.) Likewise, the map // : M(M(A)) -> A gives identities in these 
partial (and total) operations which must be satisfied by all «-tuples satisfying r. 

Again, for illustration consider the functor V\ = Hom(Z2,—) : <^«/ -> ê»**, 
and its lifting F2: ^*«/ -• «/«* (<?**» — the variety of involution algebras). Vi 
has a left adjoint F2, so this adjoint pair will induce a monad Jti on <?*** 

What does this mean concretely? An involution algebra A gives in a natural 
manner generators and relations for a certain group F2(A)—exponent 2-generators, 
and conjugacy relations among these. This group can be characterized as having a 
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universal map of involution algebras A^K V2F2(A). Now if our definition of "in­
volution algebra" were a really complete picture of the structure of the sets of 
elements of exponent 2 in groups, we would expect the maps 7]2(A) to be isomor­
phisms. (Or if you don't buy that, let us just say it is natural, in studying elements 
of exponent 2 in groups, to ask whether this map will be an isomorphism.) 

But f]2 is in general neither injective nor surjective, For example, let A be the 
involution algebra defined by two generators X, Y and one relation XY — X. One 
finds that A has underlying set {e, X, Y, Yx}. jP2(y4)will be the group on generators 
X, Y and relations X2 = Y2 = e, Y^XY = X. 

The latter relation says that Xand 7commute, so F2(A) is the fours-group, with 
underlying set {e, X, Y, XY}, and all its elements have exponent 2. Hence the map 
7)2(A) takes the form 

A i V2F2(A) = M2(A) 

which is neither surjective nor injective. The "new" element XYin M2(A) leads to a 
partial binary operation on elements of exponent 2 in a group, associating to every 
pair (x, y) such that xy = x the element xy (which will have exponent 2 precisely 
because x and y commute). This operation is not definable in terms of conjugation. 

The collapse of 7 and Yx in M2(A) likewise yields the "partial identity" (Horn 
sentence) holding in the involution algebra of any group, but not following from the 
full identities of involution algebras : 

(Vx, y) xy = x => yx = y. 

If we gather together the partial operations and partial identities arising from the 
maps 7)2(A) for all A e Oh(Jnt), and add these to our earlier list of operations and 
identities, we get axioms for what we may call a "second order involution algebra." 
In fact, the category *?nt>2 of second order involution algebras is precisely JnVl

Jh 

— (Ë**Juy{\ (lam now using the subscript 1 for "first order" involution algebras, 
i.e., what I previously just called involution algebras.) Since we get this additional 
structure on the objects V2(G) for any group G, we get a second factorization : 

(5) 

All this applies, mutatis mutandis to any representable set-valued functor F on a 
cocomplete category sé, in particular, on any variety sé of algebras. 
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One can continue to iterate this process. At each step one obtains operations and 
identities whose domains are given by systems of equations in the previously con­
structed operations. The resulting diagram ((5) extended) is called the adjoint tower 
induced by the original functor V. The construction is due to Appelgate and 
Tierney; cf. [12]. 

Note that the problem of explicitly studying these classes of algebras is not one 
of general nonsense but, for instance, in the case V] = Hom(Z2, —), real group 
theory. I do not know, for example, whether jr*t>2 can be presented by finitely many 
partial operations and identities. I do not know whether at the next step one would 
find 773 : A -> V$Fz(A) always to be an isomorphism—in which case the tower would 
become constant after that point, and £™2 would be equivalent to a full coreflective 
subcategory of 0 W / , via F3 and K3—or not. Something positive that one can 
say in this case, because Z2 is finitely presented as a group, is that on the category 
•P-Va =def lim/) ("• i^Mx)"-)Mi (the natural "<wth step of the adjoint tower")—sets 
with all the structure one gets at the finite steps, •/«*,), the maps TJJ(A) will 
indeed be isomorphisms, and so •/»*,>, is equivalent to a full coreflective subcategory 
of <gt»*/K On the other hand, there are examples of adjoint towers of arbitrary 
transfinite height. 

Let us note how Lawvere's approach to algebraic theories can be extended to 
these higher sorts of algebras. Given a category sé with colimits, and an object 
R in sé, let ^f- denote the category^---^«^1)---)^' arising at the ?th level of the 
adjoint tower induced by Hom(i?, —). We recall that <%Ì9 a variety, may be iden­
tified with the category of all product-respecting functors Tiop -> S***9 where T\ is 
the full subcategory of sé having for object-set the coproducts of copies of R 
(in other words, the object-image of the adjoint F\ : ê«* -• sé. Again, if as in §2 we 
are interested only in finitary operations, we just use {F\(n) \n <o)}'9 and in fact 
if we make no such restriction at all there are set-theoretic worries ; but we shall 
skip over these here). Likewise, to describe J*2 let T2 denote the full subcategory of 
all colimits in sé of objects of T\ ; then we find that <%2 is equivalent to the category 
"^»* r ,op", where by this we mean all functors T$P -> i*>* respecting these 
(co)products and (co)limits. The object-set of T2 e sé can also be described as 
the image of F2: ffi\ -> sé. 

For instance, in our Z2 example, T2 contains not only the groups Z2]\... 
11Z2 but also the difference-cokernel H : 

t *-> x 
Z2=tZ211 Z2 >H (the fours-group). 

t H» xy 

Hence T2 contains the map 

/»-• xy 
Z2 — # 

which induces in @}2 the partial operation we discovered. 
Note that given the "theory" of «/«*2, either in the classical sense of a list of 

partial operations and identities, or in this Lawverian form, we can speak of ^Jnv1 
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-objects" in a general category. In particular, Z2 is now a co-</«*2-object in the 
category ^ ^ « / . (And in our general context, with V\ = Hom(i?, —), R will be a 
co-^-object of sé for all n.) 

Lawvere's concept of the structure of a functor likewise generalizes naturally to 
this higher structure : In the formulation of that concept, where Lawvere took the 
full subcategory of the functor-category <£* with object-set {Vn \n = 0, l,---} , one 
merely considers instead the full closure under (finite) limits of { V} in #•*. For 
instance, our partial multiplication operation on Hom(Z2, —) now assumes the 
form of a morphism of functors W -* V, where We $»* **»' is the difference-
kernel functor 

(x9 y)v-+ x 
W- -» V2 z=jV. 

(x9 y) v->xy 

6. Various examples and observations. The reader will find it instructive (and not 
too difficult) to describe completely the adjoint towers associated with the following 
functors : the underlying set functor of an arbitrary variety of algebras ; the underly­
ing set functor of the category (quasi-variety) of torsion-free groups; (example of 
A. Stone); the functor Hom(2, —): &>»*** -* gn*9 where 2 G Ob(^*w) is the chain 
of length 1, the same example with <£W, the category of small categories, in place 
of ^ * w . (For 2 is also a category. Cf. [13, Q13].) 

(From the torsion-free groups example one can generalize to get a characteriza­
tion of quasi-varieties and semivarieties as certain categories of the form (<f *^>)-*\) 

Suppose A9 B9 C are associative rings with 1, given with maps A -> B9 A -> C. 
Then for any right 5-module M and right C-module N9 we can form Hom^M, N)9 

getting a functor V: (Jt*<S B)op x (Jt*<s C) ~> $»* (not representable in the sense 
we have been considering). Through universal tricks, one can determine the struc­
ture of V in the sense of Lawvere : It is that of a B QA C-module, where B QA C 
= {xeB ®AC\ VaeA, ax = xa}9 made a ring in a certain natural manner 
discovered by M. Sweedler. There can also be higher structure. 

If we start with a, family of objects (Rì)t<=i in a category sé, they induce a functor 
(HomCfy, —))iei- sé -> ê***I

9 which we can examine for structure of many-
sorted algebra. In the category ffîSTo^ of pointed topological spaces with 
homotopy classes of maps, the family of spheres, (S')ieN induces the functor TT* : 
j^^^A' -té?»*1*. The structure of this functor includes not only the group structures 
of each homotopy group %n9 but also operations between different degrees, e.g., 
the "Whitehead products" %m x %n -» %m+n-\9 induced by maps Sm+n~l -> Sm\\Sn. 

For applications of ideas related to those of this article to the foundations of 
algebraic geometry and differential geometry, see [6, pp. 146-244], [9], [10], [11]; 
for applications to measure theory, see [17]. 

By duality, one can apply the ideas we have discussed to representable contra-
variant functors. For instance, the (finitary) structure on the functor Hom(—, 2): 
0>***s -• g*** turns out to be precisely that of distributive lattices. (Exercise. 
Examine similarly Hom(—, 2) : £»* -• $»* and Hom(—, 2) : ffloo/séfr -> <£W.) 
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If one is interested in relational structure as well as operations on the values of a 
functor V9 one should look not only at the morphisms among the Vn but also at 
their subfunctors. If V is the covariant (contravariant) representable functor 
determined by an object R9 an important class of subfunctors of Vn are those in­
duced by epimorphisms i?ll . . . LI^ ~* S (resp. by subobjects S £ R x ... x JR). 

EXAMPLES. If 0 i ? is the category of distributive lattices, the functor Hom(—, 2) : 
<&££ -* ina has trivial finitary algebraic structure in the sense of Lawvere, but its 
finitary representable relational structure is precisely that of partially ordered 
sets, with " g " induced by its graph, 3 ^ 2 x 2 . The underlying set functor 
Hom(l, —): g?**** -> $*** likewise has no operations (so the adjoint tower 
construction will not get anywhere with it, in contrast to Hom(2, —)), but the 
relation "< | " is induced by the epimorphism l ] j l -> 2. 

Exercise. The functor Hom(Z2, —) : ^ ^ « / -*ê*t* also has representable relational 
structure not induced by its operations. What does this say in elementary group-
theoretic terms? If you are a group-theorist, find an example. 

I mentioned that a monad on ê»* could correspond to a variety of algebras 
with a proper class of operations, not generated by any set of them. An example, 
noted by Linton [15, p. 90], and studied by Manes [6, pp. 91-118], is the monad 
Jt arising from the adjunction 

underlying set 

Stone-Cech 

(<ig/offPa»s = compact Hausdorff spaces). As Manes shows, the lifting functor 
V2\ qt/ïoffflauà -> gn** is an equivalence of categories, so compact Hausdorff 
spaces may be regarded as a variety of (very infinitary) algebras. 

A variety of infinitary algebras which does not correspond to a monad on £»* is 
that of complete Boolean algebras. For it has been shown [5], [19] that there is no 
free complete Boolean algebra on countably many generators. This is equivalent to 
saying that the Xtra ry complete Boolean operations cannot be indexed by any set. 

7. Mirror, mirror-•-. Let sé<S/ denote the category of adjunctions ^ = (sé, <€\ V9 

F; 7), e). Then the question with which we began §4, "Given an adjunction &9 if we 
forget the category sé what can we 'remember' about & in terms of # ? " is 
really of the same nature as the question considered in §2. For it asks what "struc­
ture" can be put on the values of the forgetful functor: 

Sé*/ t f&af. 

The answer turned out to be: a structure of monad, giving a factorization: 

(6) 
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Of course, the definition of "algebraic structure" must be adjusted to the fact that 
we are working here with 2-categories, i.e., categories with morphisms between 
morphisms (e.g., natural transformations between functors, in féW ). Cf. Lawvere 
[6, pp. 141-155]. 

Let us think of the objects of M*» as 4-tuples, Jt = (^; M, TJ, e). The con­
struction from a monad Jt of the category of algebras <€M

9 and thence of the 
adjunction (4), is actually a right adjoint to the functor nT2 of (6). One would 
expect, rather, a left adjoint here. This also exists; it is called the Kleisli con­
struction; the new category involved is written ^ [2, §VI.5], e.g., if Jt is a monad 
on é?,**9 so that ê»*J< is a variety of algebras, i^j( turns out to be equivalent to the 
full subcategory of free algebras in $>t*J(

9 that is, to the theory of this variety. 
Both of these adjoints to nT2 are left inverses to it as well; so it does not appear 

that (6) will also show higher structure. 
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